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by
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Abstract

In this paper a hierarchical Bayesian(B) model is adopted to derive selection pro-
cedures for selecting the/best of k binomial parameters, say the probability of success
corresponding to k different suppliers. This model facilitates the use of prior information
in the analysis for both Ismall and large sample sizes. In addition to computing posterior
probabilities that the S" supplier is best, this paper presents expressions for deciding how
much better a given supplier is relative to the others. Prior information is assumed to
begin with exchangeability and can be more informative if the experimenter has other
knowledge about the suppliers as a group. A numerical example is given and the paper
concludes with remarks about future work.
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Hierarchical Bayesian Selection Procedures

for the Best Binomial Population

1. Introduction

Suppose there are k suppliers of a particular item and a sample of ni items is taken

from the i supplier yielding T, the number of successes (or dcfcct;Cs') in the sample.

Then Xi has a binomial distribution with parameter 6,, which denotes the true unkown

probability of a success (failure) from the i th supplier. The best supplier is defined to

be the one with largest (smallest) 6i. Based on the observed data and prior information

available, we seek procedures which will select a non-empty subset of the k suppliers and

assert with some confidence that the best supplier is amongst those in the selected subset.

In this paper a hierarchical Bayesian (HB) model is adopted and the behaviour of various

selection procedures thus obtained is studied. This application to binomial data parallels

the normal means problem considered by Berger and Deely (1988).

The problem of selecting the best binomial population has received considerable at-

tention in the literature mainly from a non-Bayesian approach. Pioneering paperg by Sobel

and Huyett (1957) and Gupta and Sobel (1960) dealt with selecting the best and selecting a'

a subset containing the best binomial population respectively. Later, Gupta, Huang and

Huang (1976) studied a conditional subset selection rule and a related test of homogeneity.

A good discussion of these and other non-Bayesian papers can be found in books by Gib-

bons, Olkin and Sobel (1977) and Gupta and Panchapakesan (1979). It is not the purpose

of this paper to discuss the relative merits of the non-Bayesian vs Bayesian approaches,

but we believe that for the binomial selection problem studied in this paper, the Bayesian

model contains the facility to deal easily with the type of information which is likely to

occur in practice and in that sense offers the practitioner a more appealing model.
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There have been some Bayesian and empirical Bayesian papers dealing with the bi-

nomial selection problem. Deely (1965) developed empirical Bayes procedures for gen-

eral selection problems including among them the binomial case with independent Oi's,

each with a beta prior with unknown parameters. Gupta and Liang (1986) derived non-

parametric empirical Bayes procedure for selecting the best binomial population under the

assumption that 01,..., Oh are independent each with an unknown non-parametric prior

distribution. Bratcher and Bland (1975) considered a naive Bayesian approach in which

the Oj's are independent with known but perhaps different beta priors. They considered

various multiple comparisons based on computing the posterior probabilities of each pop-

ulation being best and used numerical integration to calculate these. Later Yang (1987)

applied their model but adopted the so called PP* criterion, which had been previously

introduced for a general selection problem by Gupta and Yang (1985). This criterion, in

an effort to relate the Bayesian criterion to the classical P* condition, states that the Bayes

P* procedure selects the smallest subset for which the posterior probability that the subset .,

contains the best is at least P*.

There have been other relevant papers dealing with estimation as opposed to selection

for the binomial case. Albert (1984) considers the simultaneous estimation of k binomial

probabilities and develops empirical Bayes estimators under an exchangeable hierarchical

model. Leonard (1972) also considers this problem but uses a logit transformation to bring

the problem into a multivariate normal context. A lot acceptance problem was considered

by Eaves (1980) in which n items are drawn from each of k lots under binomial sampling.

An exchangeable hierarchical model is assumed and the predictive distribution for the next

lot is computed when all items from all lots are good.

A related problem, that of allocating the observations to the various suppliers con-

".%
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strained by the fact that the total is fixed, has received some attention in the literature.

Brooks (1987) deals with a Bayesian approach for k = 2, while Brittain and Schlessel-

man (1982) discuss this case from a frequentist viewpoint when trying to estimate p, - P2

or p1/p2. These pfoblems will not be discussed but some conclusions about allocation can

be drawn from the work presented here and these will be discussed in Section 5.

The approach in this paper is to present a model which has the capability c' ;ncor-

porating prior information concerning the suppliers as a group into the analysis. The

literature to date while recognizing the usefulness of such prior information in other prob-

lems (see for example Berger (1985), Chapter 3) has ignored applying such models to the

binomial selection problem. The hierarchical Bayesian model is one way this can be done,

easily and with useful results. These ideas are discussed more thoroughly in Section 3

after having presented the mathematical details of the model in Section 2. An example

illustrating various aspects of the model is given in Section 4 with concluding remarks and

suggestions for further work given in Section 5.

2. Mathematical details, the prior distribution and selection criteria

Let x = (X1,..., Xk) be the vector of observations from the k suppliers, xi conditional

on 0 having the binomial distribution

f(xi 10) = (jl) Oi'(1 -  -

and let 0 = (01,02,... ,k) be the vector of unknown parameters for which we want to

select that supplier with largest 0i. The prior distribution 7r(0) on 0 will be obtained

via the hierarchical Bayesian structure (see Berger (1985), Section 4.6) in which 7r(0) is

given as a mixture of a prior conditional on hyperparameters f and 17 with a hyperprior
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distribution on these parameters; that is,

r (1_) = f f 7r (910, }) h (fl, r7) d,3d7.

Conditional upon the hyperparameters fl, i?, the components of 0 are assumed to be i.i.d.

with a common beta distribution given by

(2.1) ir(6il#,?,) 0(1//) e - (1 - O) -'

where 0 </3 < 1, t/> 0; thus

k
i=1i

This partricular form of the beta distribution will be convenient for the numerical compu-

tations and elicitation of prior information. These topics will be discussed more fully in

the next section. Special note is taken here that

(2.2) E(Oi,,7) =3and or = Var O13,q=(1-0(7/(?+

The hyperparameters 3 and ?7 willbe taken as independent so that

h (3, h1(3 2(7

in which h, will be some member of the beta family and h 2 as some member of the family

.* given by

. --1-- (7+ 1)- 2  0 < ?7 < 4c/(1 - 4c)
rn-I 1m-24/((.h { (7+-1) (4/,,)m, ? > 4lj(I - 4c)

where p is the normalizing constant, c and m are parameters, 0 < c < 1/4 and m > 2.

The values of the parameters for h, and h 2 will depend upon what prior information is
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available, the noninformative exchangeable case being h, uniform and h2 having c 1/4

and m = oo.

We will use the following notation for the beta distribution:

g(yja, b) = B(a,b) ya- I(I _ y)b- I

B(a,b) = r(a + b)/(r(a)r(b))

a(tla,b) = og (y a, b) dy.

Under the notation and assumptions above, it follows that the conditional distribution of

0 given x,,3 and il is given by

k

(2.4) (I_ , = r (Oj,I #0 ,,)
'S t:=1

where
7r ( i I X i , 0 , 7) ( Xi1 O i 7 r( , , )  g g ( O la j, b ) ,f' (XAI

f(XzI,??) f(xIO,)7r(O, 1,, Y7)dO, = ni B(a,b)/B(a,,bi)
Xi)

and a =/q, b 0 ( /q, ai = a + xi, bi = b + i/i - xi. Let

(2.5) frz__!/ ,n) =1I f(xi/,1) and f(x) = f(KIN_ 1,r7)h1(0)h 2 (q)dfldi.

Then the posterior distribution of I given the data x can be written as

(2.6) 7r(!_ix) = f f 7r(8jK,,q) f( h (3)h,(n)dl&.

In fact we will not require the precise form of 7r(!x) since decisions about which supplier

or subset of suppliers should be selected will be based on easily computed expectations

taken with respect to this posterior. We now develop two such criteria.

(i) Posterior probability of getting the best.
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pj(b) P(Oj > 8, + b for all i j ) jl_,

where b C 10, 11. It will be noted that p3 (0) is just the posterior probability that 9, is largest

and the usual PP* selection criterion of Gupta and Yang is obtained by putting in the
[

selected subset the smallest number of suppliers for which the sum of their corresponding

p,(O)'s is at least P*. We have here suggested a stronger criterion for selection purposes;

one that allows the practitioner to express a quantity b, i.e. how superior does the best

have to be, and a probability P* to be attained by the selected subset. Of course for b > 0

it is no longer true that Epj(b) = 1 and in fact it may be that for a given b > 0 no supplier

is better than the others by amount b with high enough probability. The experimenter

can easily take another look and perhaps lower b or the probability requirement. In any

case we believe the pi(b)'s provide a useful criterion for selecting one or more suppliers

and gi-cs the .x, rimerter th, InterprcLdtiouk which relates to the practical problem.

Using (2.1) and letting Aj(b) = {I_: 01 > 8i + b for all i 5 j}, the expression for p3 (b)

can be derived as follows: p
p3 (b) J ( I )d0 ,

A, (b)

00 f .,..,-.
f7 1) .,b

A (b)

(2.7) ,TI G(Oj - blai,bi)g(Ojlaj,bj)dOj h~_I7 1 0)h ?7,dd

noting that the terms in brackets are equal, ai and bi being defined earlier. Thus evaluation p

of each pj(b) requires only a thrfe dime-i-nal numerical integration , all choices of hi

and h 2 , provided the incomplete beta function is available. Ole
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(ii) Expected number of future successes.

Another useful criterion for selection purposes is obtained by considering a future

observation. Suppose n future observations are to be taken from one of the suppliers. Let

the total number of successes be denoted by Y and compute E(Y) for each supplier : =

1,..., k, where E is the expection taken with respect to the distribution of Y conditional

on x, i.e. the predictive distribution. Then the supplier with largest E(Y) is called best.

Calculation for E(Yi) is easily obtained as

E(Y) = E(YI _) = 1 E(gjL , O)r(OjK)dO,

= nOi r(Oijx)dOi '101

=nE(Oilx.!

Thus ranking suppliers on the basis of largest expectation of the number of successes in n

future items is equivalent to ranking them on the basis of their posterior means based on

1the present data x. An expression for E(eiIj) involves only a two dimensional integration

and is given by:

I

(2.8) pE(OI = .f0 O, r lOS ",

1 Oijr(OijxI, z, 77)dOi f(410, 7) h(fl)h2(n)dfldt7
= f" VI f(;)

= fj00jf1[ # + n, (L,)] f~o n l,)h(7d3 ?
1 + jlni 1+ t7i ni fW

using (2.4), (2.5) and noting that the mean of g(OiI a,bi) is ai/(ai + bi).

Using the posterior means to rank the suppliers, an appropriate decision about which

subset of suppliers to select can be made, e.g. put in the selected subset supplier i if and

only if E(01 z__) > c. This selection procedure assures the decision maker that each of the

suppliers thus selected will have the expected number of successes at least as large as nc.
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Alternatively, if one selects a subset of size r,r < k, based on the r largest E(Olx), then

the expected number of successes for that subset is larger than that for any other subset

of size r. Further amplification of this point will be made in Section 5. We now turn our

attention to the various choices for h, and h 2 and discuss the influence of prior information

on these choices.

3. Prior information and elicitation for hi and h,

There are two main advantages of the seemingly complicated hierarchical structure.

Firstly, it provides a realistic Bayesian model which can easily accommodate the type of

prior information which is likely to be available; secondly, it is the appropriate model for

what is commonly called the parametric empirical Bayes approach (see Morris (1983)). In

the particular application made herein to supplier's data, it is clear that there is some prior

information concerning the suppliers as a group, i.e. approximately where their quality is

likely to be and what sort of variability amongst the 6O's can be expected. But if this

kind of information is unavailable, then it is still sensible to treat the 0i's as exchangeable

with noninformative hyperpriors. Both of these ideas are covered in the HB model. This

type of prior information is to be contrasted to those Bayesian models which assume the

0,'s are independent with known but perhaps different distributions. This approach is

generally quite unrealistic and therefore has limited application. On the other hand it is

sometimes argued that a prior distribution on t'i, tti's exists but is unknown. When this

prior is assumed to be in some parametric family, it is then suggested that repetitions of

the process may yield estimates of these parameters. Acting as though these estimates

wore the true unknown parameter values, one can then use the Bayes procedures, hence 1,

the expression parametric empirical Bayes. What estimators are sensible in this context is

generally answered by embedding the unknowns in a larger truly Bayesian model, hence
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the incorporation of hyperpriors and the expression Bayes empirical Bayes, (see l)ecly and

Lindley (1981)). Often such truly Bayesian models yield complicated numerical problems

related to the form of the posterior distribution, and in this case some form of Bayesian p

estimation is required. Again the HB model provides a structure within which sensible

estimates are easily obtained, but we point out that the particular problem treated in this

paper, no such estimators are required since pj(b) in (2.7) and E(Oilx. in (2.8) are easily

computed.

We now discuss the choices for h, and h2 and their relationship to the form of the

prior information available. ,4

Case 1 Exchangeable and noninformative.

In the situation in which practically nothing is known a priori about the suppliers with

respect to 0, it is reasonable to assume that 0 ,..., Ok are exchangeable random variables.

Any prior distribution obtained via a mixture implies exchangeability and so in particular

the structure given in the previous section insures exchangeability for any choice of h, and

h2 . Consistent with the absence of prior information is the assumption of noninformative

hyperpriors. Since 0 < < K 1 we can take a noninformative choice for h, as the uniform

distribution. For h 2 we argue that since 0 < Var (0il3, 77) < I for all # we deduce a
4

noninformative choice for h2 by putting a uniform distribution on the variance over (0, ).

This gives

h2( = (77 + 1)2 < 77< 0.

It could be suggested that a simple noninformative choice for h 2 would be h 2(?J) 1. This

has been used in the example in the next section for comparison purposes but in the special

case in which the nth component of the data vector x is either 0 or ni for all i = 1,2,..., k,

101



the improper h2 (1 ) = 1 does not yield a proper posterior. Also since the elicited prior

information will concern the conditional mean and variance it will be more convenient to

think of hyperpriors induced via this information or lack of it.

Case 2 : Prior information available.

It could be the case that some decision makers may have enough prior information to

specify precise values for 3 and Y7 in 7r(0I/1, 17), that is, select a particular beta distribution as

a prior distribution for 0O,... ,k. In fact some parametric empirical Bayes models assume

each e1 is independently generated from a particular prior with unknown parameters /

and r7. However it has been recognized that this is a rather naive view of Bayesian models

and that the notion of exchangeability amongst the Oi's is a more realistic approach, (see,

for example, Berger (1985), Chapter 4). Our approach here is to consider prior information

arising from eliciting answers from the practitioner to the following questions:

(1) Where do you expect the average of the B's to lie, i.e. can you specify an interval,

say (s1, t1), within which you are confident that the average of the e1's will lie?

(2) How variable do you consider the 0B's to be; that is, can you specify an interval,

say (s2 , t 2 ), within which you are confident all of the 0
1 's must lie?

Answering the first question will determine h, (0) as a member of the beta distribution

whose inean is taken as the midpoint of the interval (sl, t1) and variance as I(ti - sl)/4]2_

This choice is influenced by convenience but it is consistent with the elicited information

while also allowing a small probability that the mean of the 01's is outside the interval

• , specified by the experimenter. Computation of hi(Ojx) could be used to assess the exper-

imenters original judgment.

-aa, We will use the answer to the second question to determine h 2 (r/) by firstly using



this information to obtain an appropriate distribution on a2 the conditional variance of

8i given 3 and q/. Since the elicited information expresses an upper bound, say c, on a 2

over all /3 and q/, we take this to imply a flat distribution on the interval (0, c). However 'Ir

we allow the possibility that the variance could exceed this value but with a distribution

that decays exponentially to 1/4. Note that it is always the case that 0 < a2 < 1/4. This

distribution is called the 'shoe' distribution and is given by

{rn-I 0< U < C
pime ' 

t

,(,) = M

where p = 1 - (4c)m-l/m is the normalizing constant, c will be taken as c [(t 2 - S2)/4]2

and m is chosen so that the P(O < a2 < c) describes the confidence of the practitioner.

Observe that P(0 < a2 <c) so the determination of m is -..aightforward. Frompm' 5-

this distribution on a2 and using the transformation a2 
- /4(77 + 1) it is easy to obtain

h 2 as given in (2.3).

These hyperpriors will be used in a numerical example in Section 4 to show the effect

on the selection criteria. We remark that other hyperpriors satisfying the information

elicited were used but did not have much effect on pj(b) or E(0jI_). It

Numerical Examples

In this section we study the effect of the hyperpriors and give examples of the relevant

computations.

(i) Effect of sample size on pj(b)

The table below compares the values of pj(b) when the sample size changes from 10

to 20 for both the noninformative and informative cases.
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Table 1 - Values of pj(b); top figures for ni 10; figures in ( ) for ni - 20.

Noninformative Informative
xi b b

Supplier ni 0 .05 .10 0 .05 .10 .,

1 .1 .006 .002 .001 .014 .006 .002
(.000) (.000) (.000) (.001) (.000) (.000)

2 .4 .194 .136 .088 .217 .144 .088
(.110) (.060) (.029) (.120) (.063) (.030)

3 .6 .800 .720 .628 .768 .672 .564
1(.894) (.817) (.713) (.868) (.777) (.667)

These figures show that as the sample size increases, pj(b) for the largest sample

proportion increases but the difference from noninformative to informative is not very

large in either case. The noninformative hyperpriors were as in Case 1 of Section 3. For

the informative case, hypothetical answers to Questions 1 and 2 as discussed in Case 2 of

Section 3 were taken respectively as:

(1) (S.,ti) = (0.3,0.5) and thus hi was taken as g(0138,57) where the parameters

were taken as the solutions to

(.3+ .5) a (. 2 3 ab
2 a+b' 4 (a+6)2(a+b+ +1)'

(2) (s 2 ,t 2 ) = (0.1,0.6) and thus h2 is given by (2.3) with c .125 and m 4.4 :

Other choices for these informative hyperpriors were made with very little effect on the

pj(b).

(ii) All sample proportions equal but unequal sample sizes

A useful feature of the hierarchical model is its ability to deal with equal proportions ,

from the k suppliers when the sample sizes are in fact different. It seems to be the case

that the smallest sample size always has the largest pj(O). The table below shows the

computations for pj(0) when h, and h2 are the noninformative choices. Other hyperpriors

1%
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did not result in much change in pj(0).

Table 2 - Values of p,(0) and E(Olx); Equal proportions but unequal sample sizes.
3 n I - = .2 -j= .4 ni -b- -.45 ni I-i. = .45

1 10 .384 .375 20 .374 40 .351
(.407) (.45)

2 20 .323 .325 40 .325 60 .335
(.405) (.45)

3 30 .296 .302 60 .302 80 .326
(.404) (-45) _

The situation is quite different when using the posterior mean as the selection criterion.

The numbers in parantheses are the corresponding posterior means and clearly provide

no discrimination. This is to be expected since E(OjII) in (2.8) is seen to be a convex

combination of the sample proportion and the posterior mean of 3. But 3 is centered

around the average of the proportions; hence the convex combination of the two will be

very nearly the one value of sample proportions. Again very little effect was obtained by

using informative hyperpriors.

(iii) Unequal sample sizes and unequal proportions

The striking advantage of the hierarchical model is best displayed when dealing with

variable sample sizes and unequal proportions. The table below indicates the type of

computations possible for this model.

Table 3 - Values of pj(b) and E(Oyjl_); hi, h 2 noninformative.

_" 1 2 3 4 5 6 7 8
nj 18 19 21 23 16 20 22 17
xj 3 3 3 3 2 2 2 1

xj/n, .167 .156 .143 .130 .125 .100 .091 .059

E(e.(x) .175 .167 .153 .141 .140 .116 .107 .084
0 .244 .209 .154 .114 .134 .067 .048 .030

b .05 .126 .102 .067 .045 .062 .025 .015 .011
.10 .057 .044 .026 .025 .026 .008 .005 .003

14



For this data we could have a posterior probability of 0.741 of getting the best in the subset

of suppliers 1, 2, 3, 5. Note that when using the p,(b) criterion supplier 5 is preferred to

supplier 4 even though the sample proportion is in the reverse order. When using E(0lx)

this is not the case. This is reasonable in that the two criteria represent radically different

goals for the experimenter. The p1 (b) criterion should be used when a decision will be used

for a long term and E(Ilx) should be used for the next lot. Further amplificat;on of this

point will be made later.

5. Remarks, discussion and conclusions

(i) Test of hypothesis

There may be some situations in which a decision maker is concerned in the first

instance about testing the equality of the supplier's quality, i.e. test Ho : 01 =.. =k.

Whereas we feel that this is not in general the ultimate goal of the experimenter, it is

quite easy to incorporate this situation into the model by simply incorporating a prior

probability -y that H0 is true (i.e. P(Ho is true) P(i= 0) -y) and then computing the

posterior probability of H0 which is given by:

L I f ].. [1+ 1 -- fx_ ]

f( O)]

where f(x) and f(x) 1,/) are given in (2.5) and

IS

f(zO) 11 f(xl/,0)hI(#i)d3 = 1 ( /3)N-Zxiht (O )d/.
10io=1 2Xi

Then each pi should be multiplied by (1 - -*) to obtain the posterior probability that 9, is

largest since Pj as given in (2.5) is conditional upon Ho false, i.e. q > 0. One could simply

compute the Bayes factor, BF = f(xIO)/f(x), as evidence for believing Ho. We point out

however that the model of Deely and Zimmer (1987) seems more appropriate for testing

the equality of supplier's quality.

15
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(ii) Comparisons and possible extensions

It is clear that the HB model offers a much wider class of models than the naive I

Bayesian or the empirical Bayesian approaches which have been reported in the literature

thus far. In the first instance, the HB model allows through the hyperpriors h, and h 2

the facility to use prior information about the suppliers as a group whereas the naive

models have no place for such information. We believe that this prior information begins

with an assumption of at least exchangeability, but more informative models are also

possible as we have shown in the examples in Section 4. One could argue that some

approximations of the pj's or E(0jjgj)'s might be close enough and not require numerical

integration. There has been some work in this direction (see Albert and Gupta (1985) and

Leonard (1972)) but since the numerical integrations required herein are relatively easy

such approximations would appear to be unnecessary. Secondly, we point out that only a

very simple hierarchical model was used in this paper. It is clear that there is scope for

richer models. For example, one could replace/3 in (2.1) with yix/3 x + Yi2#3 2 where Yil,Yi2

are known "regressors" for i = 1,... , k and (3 = 1,2) is a vector of unknown "regression"

coefficients with hyperprior hi(3). This model would incorporate various descriptions of

changes in ei as well as the naive Bayesian model in which each 0i is assumed independent

with a known beta distribution possibly with different parameters. This latter case would

be modeled by taking h, and h 2 as point distributions at (1, 1) and 1 respectively and

then solving for Yi, and Yi2 to obtain the given known beta parameters.

Another possible extension of the HB model would involve covering partial exchange-

ability particularly relevant when k is large. In this paper we have discussed analysis when

k is small and have tacitly assumed all k binomial probabilities are exchangeable. It may

be the case that, in a large group of suppliers, exchangeability is only tenable within sub-

16



groups and from subgroup to subgroup there may be exchangeability only in their means.

Of course this fact may not be recognizable until after observing the data. The HB model

should be enriched to allow the possibility of partial exchangeability being indicated by

the data and then proceeding with the selection problem.

Finally it should be noted that the HB model has no difficulty with either small

or variable sample sizes whereas naive empirical Bayes procedures require large sample

sizes to imply their optimality properties. In addition these models cannot give practical

answers to allocation of small samples amongst suppliers. In contrzst the formulas for

pj(b) or E(Ojj) developed herein can be used to generate a matrix of possibilities over

a grid of varying small samples. The experimenter is then given tangible information

by which a satisfactory design can be selected. There has been very little work done in

this area. Recently, Yang (1988), has given sufficient conditions for pi(O) < p,(O) as a

function of xi and xj. He showed that if xj - xi > max(O, nj - ni) then pj(0) > pi(0).

Although this condition is useful, it does not completely partition the (xi, xz) space and

in fact when nj - ni is large there are many possibilities for xi and x3 which do not satisfy

Yang's condition. In particular the region where (xi/ni) = (xj/nj) (or nearly so) does

not in general satisfy this condition. Our numerical results seem to indicate that over this

region the smaller sample size gives the IALM pj(O); but this remains to be demonstrated

completely.

(iii) Differences in selection criteria

It has been proposed in this paper that either the pj(b)'s or the E(O9jx)'s be used for

selection purposes. Which to use will depend on the requirements of the practical situation.

If a decision is to be made, say contracting with the selected suppliers for delivery of items

over a period of time, then p, (b) should be used for either selecting the best or selecting
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the smallest subset for which the posterior probability that the largest (by amount b) 8,

is in the selected subset is at least P*, i.e. the PP* rule. If, however, a decision for the

short term is to be made, say which machine to use for the next n items, then E(OjI) is

more appropriate. To select a subset using this criterion, the requirement could be either

to insure that the expected number of successes is at least N* (i.e. take c = N*/n in

Section 2 (ii)) or to maximize the expected number of successes from a fixed number r of

the k suppliers, r < k.

It should be noted that if a decision theoretic approach is taken for the subset selection

problem, there is no known loss function which gives as the Bayes procedure the PP*

rule. Gupta and Yang (1985) give general conditions which must be satisfied by the loss

function in order that the PP* is Bayes amongst the restricted class of rules satisfying the

P* condition. If the decision problem is formulated as selecting a subset of fixed size then

the procedure discussed above based on E(OjjI) is Bayes with respect to, say

L(ST, jkOfkl - Ex OiiE Sr ,

where Sr ranges over subsets of size r. However Lhe procedure which insures the expected

number of successes is at least N* has not yet been shown to be a Bayes procedure in the

decision theoretic sense.

It should also be noted that the two criteria can lead to different subsets being selected,

as shown in Section 4(iii). This is even true when only a single supplier is to be selected.

This is not surprising since the two criteria clearly have different objectives as discussed

earlier. Furthermore the pj(b) calculation depends on the variance as well as the mean so

when sample sizes are quite different but proportions similar, it is to be expected that the

largest pj(b) does not correspond to the largest E(Ojlx).

18
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(iv) Conclusions

We have tried to show why the HB model is helpful to the practical problem of

selecting the best amongst k binomial populations. The salient features of this approach

are:

(i) the ability to deal easily with variable and small sample sizes;

(ii) the incorporation in the model of prior information concerning the suppliers as a

group;

(iii) the ease of computation of the selection criteria;

(iv) the dependence of the optimality qualities upon differences in the observations as

opposed to differences in the unobserved parameter space.

Further work remains to be done to make these techniques available to the experi-

menter, but we hope we have made some progress in that direction.
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